DBV-Miner: A Dynamic Bit-Vector approach for fast mining frequent closed itemsets
نویسندگان
چکیده
Frequent closed itemsets (FCI) play an important role in pruning redundant rules fast. Therefore, a lot of algorithms for mining FCI have been developed. Algorithms based on vertical data formats have some advantages in that they require scan databases once and compute the support of itemsets fast. Recent years, BitTable (Dong & Han, 2007) and IndexBitTable (Song, Yang, & Xu, 2008) approaches have been applied for mining frequent itemsets and results are significant. However, they always use a fixed size of Bit-Vector for each item (equal to number of transactions in a database). It leads to consume more memory for storage Bit-Vectors and the time for computing the intersection among Bit-Vectors. Besides, they only apply for mining frequent itemsets, algorithm for mining FCI based on BitTable is not proposed. This paper introduces a new method for mining FCI from transaction databases. Firstly, Dynamic Bit-Vector (DBV) approach will be presented and algorithms for fast computing the intersection between two DBVs are also proposed. Lookup table is used for fast computing the support (number of bits 1 in a DBV) of itemsets. Next, subsumption concept for memory and computing time saving will be discussed. Finally, an algorithm based on DBV and subsumption concept for mining frequent closed itemsets fast is proposed. We compare our method with CHARM, and recognize that the proposed algorithm is more efficient than CHARM in both the mining time and the memory usage. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Fast Algorithms for Mining Interesting Frequent Itemsets without Minimum Support
Real world datasets are sparse, dirty and contain hundreds of items. In such situations, discovering interesting rules (results) using traditional frequent itemset mining approach by specifying a user defined input support threshold is not appropriate. Since without any domain knowledge, setting support threshold small or large can output nothing or a large number of redundant uninteresting res...
متن کاملRamp: Fast Frequent Itemset Mining with Efficient Bit-Vector Projection Technique
Mining frequent itemset using bit-vector representation approach is very efficient for dense type datasets, but highly inefficient for sparse datasets due to lack of any efficient bit-vector projection technique. In this paper we present a novel efficient bit-vector projection technique, for sparse and dense datasets. To check the efficiency of our bit-vector projection technique, we present a ...
متن کاملAn Efficient Mining Algorithm by Bit Vector Table for Frequent Closed Itemsets
Mining frequent closed itemsets in data streams is an important task in stream data mining. In this paper, an efficient mining algorithm (denoted as EMAFCI) for frequent closed itemsets in data stream is proposed. The algorithm is based on the sliding window model, and uses a Bit Vector Table (denoted as BVTable) where the transactions and itemsets are recorded by the column and row vectors res...
متن کاملFast Vertical Mining Using Boolean Algebra
The vertical association rules mining algorithm is an efficient mining method, which makes use of support sets of frequent itemsets to calculate the support of candidate itemsets. It overcomes the disadvantage of scanning database many times like Apriori algorithm. In vertical mining, frequent itemsets can be represented as a set of bit vectors in memory, which enables for fast computation. The...
متن کاملLCM ver. 2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets
For a transaction database, a frequent itemset is an itemset included in at least a specified number of transactions. A frequent itemset P is maximal if P is included in no other frequent itemset, and closed if P is included in no other itemset included in the exactly same transactions as P . The problems of finding these frequent itemsets are fundamental in data mining, and from the applicatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2012